题目内容
【题目】如图,在三棱柱中,平面底面,,,,,为的中点,侧棱.
(1)求证:平面;
(2)求直线与平面所成角的余弦值.
【答案】(1)见解析;(2).
【解析】试题分析: (1)由和平面平面,平面平面,可推得平面,进而推得, 又,根据线面垂直的判定定理即可证得;(2)∵面面,∴在面上的射影在上,∴为直线与面所成的角.求出CH和,代入计算即可.
试题解析:(1)证明:∵,为的中点,∴,又平面平面,平面平面,∴平面,又平面,∴.
又,,∴面.
(2)∵面面,∴在面上的射影在上,∴为直线与面所成的角.过作于,连,
在中,.
在中,.
∴在中,.
∴直线与面所成的角的余弦值为
点睛:本题考查的是线面垂直的判定定理的应用以及求线面角,属于中档题目. 判定直线和平面垂直的方法:①定义法.②利用判定定理:一条直线和一个平面内的两条相交直线都垂直,则该直线和此平面垂直.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也垂直这个平面.
练习册系列答案
相关题目
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合计 | 1 |
(1)求出表中及图中的值;
(2)试估计他们参加社区服务的平均次数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间内的概率.