题目内容

【题目】已知圆的圆心在直线上,且与另一条直线相切于点.

(1)求圆的标准方程;

(2)已知在圆上运动,求线段的中点的轨迹方程.

【答案】(1) 圆C的方程为(x﹣1)2+(y+2)2=2;(2) (x﹣3)2+(y﹣1)2=.

【解析】试题分析:(1)由题意可知所求圆的圆心在经过点,且与直线垂直的直线上,又所求圆的圆心在直线上,解方程组求出圆心,求出半径,即的长,可得圆的方程;
(2),则有代入圆 即可得到线段的中点的轨迹方程.

试题解析:(1)设圆C的方程为(x﹣a)2+(y﹣b)2=r2

根据题意得:

解得:

则圆C的方程为(x﹣1)2+(y+2)2=

(2)设M(x,y),B(x0,y0),则有代入圆C方程得:(2x﹣5)2+(2y﹣4)2=8,化简得(x﹣3)2+(y﹣1)2=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网