题目内容
【题目】已知椭圆的中心在原点,焦点在轴上,离心率.以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)若点为椭圆上一点,直线的方程为,求证:直线与椭圆有且只有一个交点.
【答案】(I);(II)详见解析.
【解析】试题分析:
(1)利用题意求得, ,椭圆的方程为.
(2)首先讨论当的情况,否则联立直线与椭圆的方程,结合直线的特点整理可得直线与椭圆有且只有一个交点.
试题解析:(Ⅰ)依题意,设椭圆的方程为,焦距为,
由题设条件知, , ,
, ,
所以, ,或, (经检验不合题意舍去),
故椭圆的方程为.
(Ⅱ)当时,由,可得,
当, 时,直线的方程为,直线与曲线有且只有一个交点.
当, 时,直线的方程为,直线与曲线有且只有一个交点.
当时,直线的方程为,联立方程组
消去,得.①
由点为曲线上一点,得,可得.
于是方程①可以化简为,解得,
将代入方程可得,故直线与曲线有且有一个交点,
综上,直线与曲线有且只有一个交点,且交点为.
练习册系列答案
相关题目
【题目】某学校为了了解该校学生对于某项运动的爱好是否与性别有关,通过随机抽查110名学生,得到如下2×2的列联表:
喜欢该项运动 | 不喜欢该项运动 | 总计 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由公式,算得
附表:
0.025 | 0.01 | 0.005 | |
5.024 | 6.635 | 7.879 |
参照附表,以下结论正确是( )
A. 有以上的把握认为“爱好该项运动与性别有关”
B. 有以上的把握认为“爱好该项运动与性别无关”
C. 有以上的把握认为“爱好该项运动与性别有关”
D. 有以上的把握认为“爱好该项运动与性别无关”