题目内容

如图,已知矩形ABCD,PA⊥平面ABCD于A,M,N分别为AB,PC的中点
(1)求证:MN⊥AB;
(2)若平面PDC与平面ABCD所成的二面角为θ,能否确定θ,使直线MN是异面直线AB与PC的公垂线?若能确定,求出的值;若不能确定,说明理由.
证明:
(1)见解析;
(2)由已知角PDA就是平面PDC与平面ABCD所成二面角平面角直角三角形PDA中设AD=a,则PD=,取CD中点G,直角三角形MNG中,角MGN=,MG=,于是,得能确定,使MN是异面直线AB与PC的公垂线  
(1)取CD中点G,连接MG,NG,则面MNG∥面PAD,易正明AB⊥面PAD,故AB⊥面MNE,进而AB⊥MN; 直线MN是异面直线AB与PC的公垂线,只需再AB⊥PC即可。
证明:
(1)略
(2)由已知角PDA就是平面PDC与平面ABCD所成
成二面角平面角直角三角形PDA中设AD=a,则PD=
取CD中点G,直角三角形MNG中,角MGN=,MG=
于是,得能确定,使MN是异面直线AB与PC的公垂线  
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网