题目内容
【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:
(1)当取何值时,公交群体的人均通勤时间等于自驾群体的人均通勤时间?
(2)已知上班族的人均通勤时间计算公式为,讨论单调性,并说明其实际意义.
【答案】(1)或时,公交群体的人均通勤时间等于自驾群体的人均通勤时间;
(2)见解析
【解析】
(1)取,解得答案.
(2)计算得到,再判断单调性得到答案.
(1)由题意知,当时,
令,化简得,解得或.
因此,当或时,公交群体的人均通勤时间等于自驾群体的人均通勤时间;
(2)当时,;
当时,
∴
当时,函数单调递减;
当时,函数单调递减;
当时,函数单调递增.
说明该地上班族中有小于的人自驾时,人均通勤时间是递减的;
有大于的人自驾时,人均通勤时间是递增的;
当自驾人数为时,人均通勤时间最少.
【题目】某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱。现统计了连续5天的售出和收益情况,如下表:
售出水量x(单位:箱) | 7 | 6 | 6 | 5 | 6 |
收益y(单位:元) | 165 | 142 | 148 | 125 | 150 |
(Ⅰ) 若x与y成线性相关,则某天售出8箱水时,预计收益为多少元?
(Ⅱ) 期中考试以后,学校决定将诚信用水的收益,以奖学金的形式奖励给品学兼优的特困生,规定:特困生考入年级前200名,获一等奖学金500元;考入年级201—500 名,获二等奖学金300元;考入年级501名以后的特困生将不获得奖学金。甲、乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为.
⑴在学生甲获得奖学金条件下,求他获得一等奖学金的概率;
⑵已知甲、乙两名学生获得哪个等第的奖学金是相互独立的,求甲、乙两名学生所获得奖学金总金额X 的分布列及数学期望。
附: , 。