题目内容
【题目】已知函数,为实数.
(1)当时,求的最小值;
(2)若存在实数,使得对任意实数都有成立,求的取值范围.
【答案】(1);(2)
【解析】
(1)根据题意将二次函数配成顶点式,画出函数图像.通过对分类讨论,即可确定在不同区间内的最小值.
(2)根据函数解析式,代入求得,再代入不等式中可得关于的二次不等式.构造函数,即分析对任意实数成立即可.由二次函数性质可知需满足.得不等式组后,可利用求得的取值范围.则在此范围内有解即可.构造函数,即在时有解即可.根据二次函数的对称、与y轴交点情况,分类讨论即可求得n的取值范围.
(1)函数
对应函数图像如下图所示:
(ⅰ)当即时,,
(ⅱ)当即时,,
(ⅲ)当时,.
综上,
(2)因为
则
因为
代入得,变形可得
令,即对任意实数,成立
由二次函数性质可得,代入可得
关于t的不等式组有解即可,
解不等式可得
在上有解即可
令
因为,所以,所以函数与y轴交点位于y轴正半轴
(ⅰ)当对称轴位于左侧时,满足即可,也就是,解不等式组可得,
(ⅱ)当对称轴位于之间时,满足即可,也就是,解得
(ⅲ)当对称轴在右侧时,即 时,函数在时无解.
综上可知
又因为,
∴n的取值范围是
【题目】已知函数.
(1)完成表一中对应的值,并在坐标系中用描点法作出函数的图象:(表一)
0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 | |
0.08 | 1.82 | 2.58 |
(2)根据你所作图象判断函数的单调性,并用定义证明;
(3)说明方程的根在区间存在的理由,并从表二中求使方程的根的近似值达到精确度为0.01时运算次数的最小值并求此时方程的根的近似值,且说明理由.
(表二)二分法的结果
运算次数的值 | 左端点 | 右端点 | ||
-0.537 | 0.6 | 0.75 | 0.08 | |
-0.217 | 0.675 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.73125 | 0.011 | |
-0.03 | 0.721875 | 0.73125 | 0.011 | |
-0.01 | 0.7265625 | 0.73125 | 0.011 |