题目内容

【题目】已知,其中向量,().

(1)求的最小正周期和最小值;

(2)在△ABC中,角A、B、C的对边分别为,若,a=,求边长的值.

【答案】(1)最小正周期为π,最小值为-2; (2)c =1或c=3.

【解析】

(1)先利用向量数量积的坐标表示求出的表达式,再求解周期和最值.

(2)先求角A,再利用余弦定理求出c.

(1) f(x)=(sin2x,2cosx)·(,cosx)-1=sin2x+cos2x=2sin(2x+),

∴f(x)的最小正周期为π,最小值为-2.

(2) f()=2sin()=∴sin()=,

∴ A= (舍去),

由余弦定理得a2=b2+c2-2bccosA,即13=16+c2-4c,即c2-4c+3=0,

从而c =1或c=3.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网