题目内容
【题目】已知α∈( ,π),sinα= .
(1)求sin( +α)的值;
(2)求cos( ﹣2α)的值.
【答案】
(1)解:α∈( ,π),sinα= .∴cosα=﹣ =
sin( +α)=sin cosα+cos sinα= =﹣ ;
∴sin( +α)的值为:﹣
(2)解:∵α∈( ,π),sinα= .∴cos2α=1﹣2sin2α= ,sin2α=2sinαcosα=﹣
∴cos( ﹣2α)=cos cos2α+sin sin2α= =﹣ .
cos( ﹣2α)的值为:﹣ .
【解析】(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin( +α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos( ﹣2α)的值.
【考点精析】关于本题考查的两角和与差的余弦公式和两角和与差的正弦公式,需要了解两角和与差的余弦公式:;两角和与差的正弦公式:才能得出正确答案.
【题目】在十九大“建设美丽中国”的号召下,某省级生态农业示范县大力实施绿色生产方案,对某种农产品的生产方式分别进行了甲、乙两种方案的改良。为了检查甲、乙两种方案的改良效果,随机在这两种方案中各任意抽取了件产品作为样本逐件称出它们的重量(单位:克),重量值落在之间的产品为合格品,否则为不合格品。下表是甲、乙两种方案样本频数分布表。
产品重量 | 甲方案频数 | 乙方案频数 |
(1)求出甲(同组中的重量值用组中点值代替)方案样本中件产品的平均数;
(2)若以频率作为概率,试估计从两种方案分别任取件产品,恰好两件产品都是合格品的概率分别是多少;
(3)由以上统计数据完成下面列联表,并回答有多大把握认为“产品是否为合格品与改良方案的选择有关”.
甲方案 | 乙方案 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
参考公式: ,其中.
临界值表: