题目内容

12.△ABC中,角A、B、C的对边a、b、c,且3acosA=$\sqrt{6}$(bcosC+ccosB).
(1)求tan2A的值;
(2)若$sin(\frac{π}{2}+B)=\frac{1}{3}$,c=2$\sqrt{2}$,求△ABC的面积.

分析 (1)运用正弦定理,结合两角的和差公式和正切的二倍角公式,计算即可得到;
(2)运用诱导公式和两角的和差公式,以及正弦定理和面积公式,即可得到所求值.

解答 解:(1)由正弦定理得3sinAcosA=$\sqrt{6}$(sinBcosC+sinCcosB),
即有$3sinAcosA=\sqrt{6}sin(B+C)$=$\sqrt{6}$sinA,
得$cosA=\frac{{\sqrt{6}}}{3},sinA=\frac{{\sqrt{3}}}{3}$,
则tanA=$\frac{sinA}{cosA}$=$\frac{\sqrt{2}}{2}$,
tan2A=$\frac{2tanA}{1-ta{n}^{2}A}$=2$\sqrt{2}$;
(2)若$sin(\frac{π}{2}+B)=\frac{1}{3}$,
即有$cosB=\frac{1}{3},sinB=\frac{{2\sqrt{2}}}{3}$,
${sinC}=sin(A+B)=sinAcosB+cosAsinB=\frac{{5\sqrt{3}}}{9}$,
又$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$得$a=\frac{{6\sqrt{2}}}{5},b=\frac{{8\sqrt{3}}}{5}$,
则${S_△}=\frac{1}{2}absinC=\frac{8}{5}\sqrt{2}$.

点评 本题考查正弦定理和三角形的面积公式的运用,同时考查三角函数的恒等变换的运用,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网