题目内容
2.设集合A={x|x=π+$\frac{2kπ}{3}$,k∈z},B={x|x=kπ+$\frac{π}{3}$,k∈z},C={x|x=kπ+$\frac{2π}{3}$,k∈z},则A∩(B∪C)=( )A. | $\left\{{x|x=kπ+\frac{π}{3},k∈z}\right\}$ | B. | $\left\{{x|x=kπ-\frac{π}{3},k∈z}\right\}$ | C. | $\left\{{x|x=2kπ±\frac{π}{3},k∈z}\right\}$ | D. | $\left\{{x|x=kπ±\frac{π}{3},k∈z}\right\}$ |
分析 求出B与C的并集,找出A与并集的交集即可.
解答 解:∵A={x|x=π+$\frac{2kπ}{3}$,k∈Z},B={x|x=kπ+$\frac{π}{3}$,k∈Z},C={x|x=kπ+$\frac{2π}{3}$,k∈Z},
∴A∩(B∪C)={x|x=2kπ±$\frac{π}{3}$,k∈Z},
故选:C.
点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关题目
7.2014年世界经济形势严峻,某企业为了增强自身竞争力,计划对职工进行技术培训,以提高产品的质量.为了解某车间对技术培训的态度与性别的关系,对该车间所有职工进行了问卷调查得到了如下的2×2列联表:
(1)用分层抽样的方法在不赞成的职工中抽5人进行调查,其中男职工、女职工各抽取多少人?
(2)在上述抽取的5人中选2人,求至少有一名男职工的概率;
(3)据此资料,判断对技术培训的态度是否与性别有关?并证明你的结论.
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,
赞成 | 不赞成 | 合计 | |
男职工 | 22 | 8 | 30 |
女职工 | 8 | 12 | 20 |
合计 | 30 | 20 | 50 |
(2)在上述抽取的5人中选2人,求至少有一名男职工的概率;
(3)据此资料,判断对技术培训的态度是否与性别有关?并证明你的结论.
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
11.下列结构图中,框①、②处理该分别填入( )
A. | l?α,l⊥α | B. | l?α,l与α相交 | C. | l?α,l⊥α | D. | l?α,l与α相交 |