题目内容

【题目】已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是(  )
A.mα,nα,m∥β,n∥βα∥β
B.α∥β,mα,nβ,m∥n
C.m⊥α,m⊥nn∥α
D.m∥n,n⊥αm⊥α

【答案】D
【解析】解:在长方体ABCD﹣A1B1C1D1中,
A、若平面AC是平面α,平面BC1是平面β,
直线AD是直线m,点E,F分别是AB,CD的中点,则EF∥AD,EF是直线n,
显然满足α∥β,mα,nβ,但是m与n异面;
B、若平面AC是平面α,平面A1C1是平面β,
直线AD是直线m,A1B1是直线n,
显然满足mα,nα,m∥β,n∥β,但是α与β相交;
C、若平面AC是平面α,直线AD是直线n,AA1是直线m,
显然满足m⊥α,m⊥n,但是n∈α;
故选D.

【考点精析】通过灵活运用空间中直线与平面之间的位置关系,掌握直线在平面内—有无数个公共点;直线与平面相交—有且只有一个公共点;直线在平面平行—没有公共点即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网