题目内容
已知数列{an}的前n项和为Sn=3n-1.
(1)求数列{an}的通项公式;
(2)若bn= (Sn+1),求数列{bnan}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)若bn= (Sn+1),求数列{bnan}的前n项和Tn.
(1)an=2×3n-1(2)-,n∈N*
(1)当n=1时,a1=S1=2,
当n≥2时,an=Sn-Sn-1=(3n-1)-(3n-1-1)=2×3n-1,综上所述,an=2×3n-1.
(2)bn= (Sn+1)=3n=-n,所以bnan=-2n×3n-1,
Tn=-2×1-4×31-6×32-…-2n×3n-1,
3Tn=-2×31-4×32-…-2(n-1)×3n-1-2n×3n,相减,得
-2Tn=-2×1-2×31-2×32-…-2×3n-1+2n×3n
=-2×(1+31+32+…+3n-1)+2n×3n,
所以Tn=(1+31+32+…+3n-1)-n×3n=-n×3n=-,n∈N*
当n≥2时,an=Sn-Sn-1=(3n-1)-(3n-1-1)=2×3n-1,综上所述,an=2×3n-1.
(2)bn= (Sn+1)=3n=-n,所以bnan=-2n×3n-1,
Tn=-2×1-4×31-6×32-…-2n×3n-1,
3Tn=-2×31-4×32-…-2(n-1)×3n-1-2n×3n,相减,得
-2Tn=-2×1-2×31-2×32-…-2×3n-1+2n×3n
=-2×(1+31+32+…+3n-1)+2n×3n,
所以Tn=(1+31+32+…+3n-1)-n×3n=-n×3n=-,n∈N*
练习册系列答案
相关题目