题目内容

7.已知抛物线C:y2=2px的焦点为F,过其焦点且斜率为1的直线交抛物线于M、N两点,若线段MN中点纵坐标为4,则该抛物线准线方程为(  )
A.x=1B.x=-1C.x=2D.x=-2

分析 先假设M,N的坐标,根据M,N满足抛物线方程将其代入得到两个关系式,再将两个关系式相减,根据直线的斜率和线段MN的中点的纵坐标的值可求出p的值,进而得到准线方程.

解答 解:设M(x1,y1)、N(x2,y2),
则有y12=2px1,y22=2px2
两式相减得:(y1-y2)(y1+y2)=2p(x1-x2),
又因为直线的斜率为1,所以$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=1,
所以有y1+y2=2p,
又线段MN的中点的纵坐标为4,
即y1+y2=8,所以p=4,
所以抛物线的准线方程为x=-$\frac{p}{2}$即x=-2.
故选:D.

点评 本题考查抛物线的方程和性质,主要是抛物线的方程的运用,同时考查点差法解决中点弦问题,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网