题目内容
【题目】已知a=(1,2),b=(-2,n),a与b的夹角是45°.
(1) 求b;
(2) 若c与b同向,且a与c-a垂直,求向量c的坐标.
【答案】(1)(-2,6).(2)(-1,3)
【解析】试题分析(1)由向量夹角公式、向量模的坐标表示、向量数量积的坐标表示得关于n的方程,解方程可得n=6,即得b;(2)由向量平行可设c=λb(λ>0),由向量垂直可得数量积为零,根据向量数量积坐标表示可得关于λ的方程,解得λ值 ,即得向量c的坐标
试题解析:解:(1) ∵ a·b=2n-2,|a|=,|b|=,
∴ cos 45°==,
∴ 3n2-16n-12=0(n>1),
∴ n=6或n=- (舍去),∴ b=(-2,6).
(2) 由(1)知,a·b=10,|a|2=5.
∵ c与b同向,故可设c=λb(λ>0).
∵ a与c-a垂直,∴ (c-a)·a=0,
∴ λb·a-|a|2=0,∴ λ===.
∴ c=b=(-1,3).
练习册系列答案
相关题目