题目内容
如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)求证:PB∥平面AEC.
(Ⅰ)求证:AC⊥PB;
(Ⅱ)求证:PB∥平面AEC.
考点:棱柱、棱锥、棱台的体积,空间中直线与直线之间的位置关系,直线与平面平行的判定
专题:空间位置关系与距离
分析:(Ⅰ)由已知得AC⊥AB,AC⊥PA,从而AC⊥平面PAB,由此能证明AC⊥PB.
(Ⅱ)连接BD,与AC相交于O,连接EO,由已知得EO∥PB,由此能证明PB∥平面AEC.
(Ⅱ)连接BD,与AC相交于O,连接EO,由已知得EO∥PB,由此能证明PB∥平面AEC.
解答:
(Ⅰ)证明:∵在底面为平行四边形的四棱锥P-ABCD中,
AB⊥AC,PA⊥平面ABCD,
∴AC⊥AB,AC⊥PA,
又AB∩PA=A,∴AC⊥平面PAB,
∵PB?平面PAB,∴AC⊥PB.
(Ⅱ)证明:连接BD,与AC相交于O,连接EO,
∵ABCD是平行四边形,
∴O是BD的中点,又E是PD的中点,
∴EO∥PB,
又PB不包含于平面AEC,EO?平面AEC,
∴PB∥平面AEC.
AB⊥AC,PA⊥平面ABCD,
∴AC⊥AB,AC⊥PA,
又AB∩PA=A,∴AC⊥平面PAB,
∵PB?平面PAB,∴AC⊥PB.
(Ⅱ)证明:连接BD,与AC相交于O,连接EO,
∵ABCD是平行四边形,
∴O是BD的中点,又E是PD的中点,
∴EO∥PB,
又PB不包含于平面AEC,EO?平面AEC,
∴PB∥平面AEC.
点评:本题考查异面直线垂直的证明,考查直线与平面平行的证明,是中档题,解题时要注意空间思维能力的培养.
练习册系列答案
相关题目
抛物线y2=2px三点的纵坐标的平方成等差数列,则这三点的横坐标( )
A、成等差数列 |
B、成等比数列 |
C、即成等差数列又成等比数列 |
D、即不成等差数列又不成等比数列 |
在△ABC中,角A、B、C所对的边分别为a,b,c,若(2b-c)cosA=acosC,则A=( )
A、30° | B、45° |
C、60° | D、120° |