题目内容
【题目】已知函数
(1)若,求证:
(2)若,恒有,求实数的取值范围.
【答案】(1)见解析;(2)(﹣∞,0]
【解析】
(1)利用导数求x<0时,f(x)的极大值为,即证(2)等价于k≤,x>0,令g(x)=,x>0,再求函数g(x)的最小值得解.
(1)∵函数f(x)=x2e3x,∴f′(x)=2xe3x+3x2e3x=x(3x+2)e3x.
由f′(x)>0,得x<﹣或x>0;由f′(x)<0,得,
∴f(x)在(﹣∞,﹣)内递增,在(﹣,0)内递减,在(0,+∞)内递增,
∴f(x)的极大值为,
∴当x<0时,f(x)≤
(2)∵x2e3x≥(k+3)x+2lnx+1,∴k≤,x>0,
令g(x)=,x>0,则g′(x),
令h(x)=x2(1+3x)e3x+2lnx﹣1,则h(x)在(0,+∞)上单调递增,
且x→0+时,h(x)→﹣∞,h(1)=4e3﹣1>0,
∴存在x0∈(0,1),使得h(x0)=0,
∴当x∈(0,x0)时,g′(x)<0,g(x)单调递减,
当x∈(x0,+∞)时,g′(x)>0,g(x)单调递增,
∴g(x)在(0,+∞)上的最小值是g(x0)=,
∵h(x0)=+2lnx0﹣1=0,所以,
令,
令
所以=1,,
∴g(x0)
∴实数k的取值范围是(﹣∞,0].
【题目】在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如表1.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡为优等品,寿命小于300天的灯泡为次品,其余的灯泡为正品.
表1
寿命(天) | 频数 | 频率 |
20 | 0.10 | |
30 | a | |
70 | 0.35 | |
b | 0.15 | |
50 | 0.25 | |
合计 | 200 | 1 |
(1)根据表1中的数据,写出a、b的值;
(2)某人从灯泡样品中随机地购买了个,若这n个灯泡的等级情形恰与按三个等级分层抽样所得的结果相同,求n的最小值;
(3)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X表示此人所购买的灯泡中次品的个数,求X的分布列和数学期望.