题目内容

10.已知x>0,y>0,$\frac{1}{x}+\frac{1}{y}$=2,若x+y>3m2+m恒成立,则实数m的取值范围用区间表示为(-1,$\frac{2}{3}$).

分析 首先,根据已知条件,转化为(x+y)min>3m2+m,然后得到x+y=$\frac{1}{2}$×2×(x+y)=$\frac{1}{2}$(x+y)($\frac{1}{x}$+$\frac{1}{y}$),再结合基本不等式确定其最值即可.

解答 解:∵x>0,y>0,x+y>3m2+m恒成立,
∴(x+y)min>3m2+m,
∵x+y=$\frac{1}{2}$×2×(x+y)
=$\frac{1}{2}$(x+y)($\frac{1}{x}$+$\frac{1}{y}$)
=$\frac{1}{2}$(2+$\frac{y}{x}$+$\frac{x}{y}$)≥$\frac{1}{2}$(2+2)=2,
∴3m2+m<2,
∴-1<m<$\frac{2}{3}$.
故答案为:(-1,$\frac{2}{3}$).

点评 本题重点考查了基本不等式及其灵活运用,注意基本不等式的适应关键:一正、二定(定值)、三相等(即验证等号成立的条件),注意给条件求最值问题,一定要充分利用所给的条件,作出适当的变形,然后,巧妙的利用基本不等式进行处理,这也是近几年常考题目,复习时需要引起高度关注.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网