题目内容

【题目】设数列{an}的前n项和为Sn , 满足Sn=2nan+1﹣3n2﹣4n,n∈N* , 且S3=15.
(1)求a1 , a2 , a3的值;
(2)求数列{an}的通项公式.

【答案】
(1)

解:由Sn=2nan+1﹣3n2﹣4n,n∈N*,得:

S2=4a3﹣20 ①

又S3=S2+a3=15 ②

联立①②解得:a3=7.

再在Sn=2nan+1﹣3n2﹣4n中取n=1,得:

a1=2a2﹣7 ③

又S3=a1+a2+7=15 ④

联立③④得:a2=5,a1=3.

∴a1,a2,a3的值分别为3,5,7


(2)

解:∵a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1.

由此猜测an=2n+1.

下面由数学归纳法证明:

①当n=1时,a1=3=2×1+1成立.

②假设n=k时结论成立,即ak=2k+1.

那么,当n=k+1时,

由Sn=2nan+1﹣3n2﹣4n,得

两式作差得:

= =2(k+1)+1.

综上,当n=k+1时结论成立.

∴an=2n+1.


【解析】(1)在数列递推式中取n=2得一关系式,再把S3变为S2+a3得另一关系式,联立可求a3 , 然后把递推式中n取1,再结合S3=15联立方程组求得a1 , a2;(2)由(1)中求得的a1 , a2 , a3的值猜测出数列的一个通项公式,然后利用数学归纳法证明.
【考点精析】关于本题考查的数列的通项公式,需要了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网