题目内容
【题目】设数列{an}的前n项和为Sn , 满足Sn=2nan+1﹣3n2﹣4n,n∈N* , 且S3=15.
(1)求a1 , a2 , a3的值;
(2)求数列{an}的通项公式.
【答案】
(1)
解:由Sn=2nan+1﹣3n2﹣4n,n∈N*,得:
S2=4a3﹣20 ①
又S3=S2+a3=15 ②
联立①②解得:a3=7.
再在Sn=2nan+1﹣3n2﹣4n中取n=1,得:
a1=2a2﹣7 ③
又S3=a1+a2+7=15 ④
联立③④得:a2=5,a1=3.
∴a1,a2,a3的值分别为3,5,7
(2)
解:∵a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1.
由此猜测an=2n+1.
下面由数学归纳法证明:
①当n=1时,a1=3=2×1+1成立.
②假设n=k时结论成立,即ak=2k+1.
那么,当n=k+1时,
由Sn=2nan+1﹣3n2﹣4n,得 ,
,
两式作差得: .
∴
= =2(k+1)+1.
综上,当n=k+1时结论成立.
∴an=2n+1.
【解析】(1)在数列递推式中取n=2得一关系式,再把S3变为S2+a3得另一关系式,联立可求a3 , 然后把递推式中n取1,再结合S3=15联立方程组求得a1 , a2;(2)由(1)中求得的a1 , a2 , a3的值猜测出数列的一个通项公式,然后利用数学归纳法证明.
【考点精析】关于本题考查的数列的通项公式,需要了解如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能得出正确答案.
【题目】某零售店近5个月的销售额和利润额资料如下表:
商店名称 | |||||
销售额/千万元 | 3 | 5 | 6 | 7 | 9 |
利润额/百万元 | 2 | 3 | 3 | 4 | 5 |
(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;
(2)用最小二乘法计算利润额关于销售额的回归直线方程;
(3)当销售额为4千万元时,利用(2)的结论估计该零售店的利润额(百万元).
[参考公式:,]