题目内容
【题目】《九章算木》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”,现有一阳马,其正视图和侧视图是如图所示的直角三角形,该“阳马”的体积为,若该阳马的顶点都在同一个球面上,则该球的表面积为( )
正视图 侧视图
A. B. C. D.
【答案】D
【解析】
该几何体为四棱锥P﹣ABCD,底面ABCD为矩形,其中PD⊥底面ABCD.因为“阳马”的体积为,所以利用V = ,得PD=2, 则该阳马的外接球的直径利用勾股定理可以求出,即可求出球的表面积.
如图所示,该几何体为四棱锥P﹣ABCD.底面ABCD为矩形,
其中PD⊥底面ABCD.AB=2,AD=4,因为“阳马”的体积为,
所以V =
所以PD=2.
则该阳马的外接球的直径为PB= .所以r=
∴该阳马的外接球的体积 .
故选:D.
【题目】某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图.
(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出不合格品约多少件?
(Ⅲ)根据已知条件完成下面列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?
甲生产线 | 乙生产线 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
附:(其中为样本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】今年年初,中共中央、国务院发布《关于开展扫黑除恶专项斗争的通知》,在全国范围部署开展扫黑除恶专项斗争.那么这次的“扫黑除恶”专项斗争与2000年、2006年两次在全国范围内持续开展了十多年的“打黑除恶”专项斗争是否相同呢?某高校一个社团在年后开学后随机调查了位该校在读大学生,就“扫黑除恶”与“打黑除恶”是否相同进行了一次调查,得到具体数据如表:
不相同 | 相同 | 合计 | |
男 | |||
女 | |||
合计 |
(1)根据如上的列联表,能否在犯错误的概率不超过的前提下,认为“扫黑除恶”与“打黑除恶”是否相同与性别有关"?
(2)计算这位大学生认为“扫黑除恶”与“打黑除恶”不相同的频率,并据此估算该校名在读大学生中认为“扫黑除恶”与“打黑除恶”不相同的人数;
(3)为了解该校大学生对“扫黑除恶”与“打黑除恶”不同之处的知道情况,该校学生会组织部选取位男生和位女生逐个进行采访,最后再随机选取次采访记录放到该大学的官方网站上,求最后被选取的次采访对象中至少有一位男生的概率.
参考公式: .
附表: