题目内容
【题目】若对于任意x∈R都有f(x)+2f(-x)=3cosx-sinx,则函数f(2x)图象的对称中心为( )
A. (kπ-,0)(k∈Z) B. (-,0)(k∈Z)
C. (kπ-,0)(k∈Z) D. (-,0)(k∈Z)
【答案】D
【解析】
利用解方程组的方法求函数f(x)解析式,可得f(2x)的解析式,再根据正弦函数的对称性,可得f(2x)图象的对称中心.
∵对任意x∈R,都有f(x)+2f(﹣x)=3cosx﹣sinx①,
用﹣x代替x,得f(﹣x)+2f(x)=3cos(﹣x)﹣sin(﹣x)②,
即 f(﹣x)+2f(x)=3cosx+sinx②;
由①②组成方程组,解得f(x)=sinx+cosx=sin(x+),
∴f(2x)=sin(2x+).
令2x+=kπ,k∈Z,解得x=﹣,
函数f(2x)图象的对称中心为(﹣,0),k∈Z,
故选:D.
【题目】一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:
转速x(转/秒) | 16 | 14 | 12 | 8 |
每小时生产有缺陷的零件数y(件) | 11 | 9 | 8 | 5 |
(1)画出散点图;
(2)如果y与x有线性相关的关系,求回归直线方程;
(3)若实际生产中,允许每小时生产的产品中有缺陷的零件最多为10个,那么机器的运转速度应控制在什么范围内?
【题目】我国有多个地方盛产板栗,但板栗的销售受季节的影响,储存时间不能太长.某校数学兴趣小组对近几年某食品销售公司的板栗销售量y(吨)和板栗的销售单价x(元/千克)之间的关系进行了调查,得到下表数据:
销售单价x(元/千克) | 11 | 10.5 | 10 | 9.5 | 9 | 8 |
销售量y(吨) | 5 | 6 | 8 | 10 | 11 | 14.1 |
(1)根据前5组数据,求出y关于x的线性回归方程;
(2)若线性回归方程得到的估计数据与剩下的检验数据的误差不超过0.5,则认为线性回归方程是理想的,试问(1)中得到的线性回归方程是否理想?
(附:线性回归方程,其中)