题目内容
【题目】设函数.
(1)求函数的单调区间;
(2)若函数在零点,证明:.
【答案】(1)在上是增函数,在上是减函数; (2).
【解析】
(1)先确定函数的定义域,然后求,进而根据导数与函数单调性的关系,判断函数 的单调区间;
(2)采用分离参数法,得,根据在上存在零点,可知有解,构造,求导,知在上存在唯一的零点,即零点k满足,进而求得,再根据有解,得证
(1)解:函数的定义域为,
因为,所以.
所以当时,,在上是增函数;
当时,,在上是减函数.
所以在上是增函数,在上是减函数.
(2)证明:由题意可得,当时,有解,
即有解.
令,则.
设函数,所以在上单调递增.
又,所以在上存在唯一的零点.
故在上存在唯一的零点.设此零点为,则.
当时,;当时,.
所以在上的最小值为.
又由,可得,所以,
因为在上有解,所以,即.
练习册系列答案
相关题目