题目内容

2.正项数列{an}中,Sn为其前n项和,且Sn=$\frac{1}{2}$(an+$\frac{1}{a_n}$)
(1)求a1和a2的值;    
(2)求数列{an}的通项公式;
(3)求证:$\frac{1}{{2{S_1}}}+\frac{1}{{3{S_2}}}+…+\frac{1}{{({n+1}){S_n}}}$<2(1-$\frac{1}{{{S_{n+1}}}}$),(n∈N*).

分析 (1)通过在表达式Sn=$\frac{1}{2}$(an+$\frac{1}{a_n}$)中令n=1、2计算即得结论;
(2)通过求出数列{an}的前几项,利用数学归纳法证明即可;
(3)利用基本不等式,通过数学归纳法证明即可.

解答 (1)解:∵Sn=$\frac{1}{2}$(an+$\frac{1}{a_n}$),
∴a1=$\frac{1}{2}$(a1+$\frac{1}{{a}_{1}}$),
解得:a1=1或a1=-1(舍),
∴a1+a2=$\frac{1}{2}$(a2+$\frac{1}{{a}_{2}}$),
即1+a2=$\frac{1}{2}$(a2+$\frac{1}{{a}_{2}}$),
解得:a2=$\sqrt{2}$-1或a2=-$\sqrt{2}$-1(舍),
综上,a1=1、a2=$\sqrt{2}$-1;    
(2)数列{an}的通项an=$\sqrt{n}$-$\sqrt{n-1}$.
下面用数学归纳法来证明:
①当n=1时,显然成立;
②假设当n=k(k≥2)时成立,ak=$\sqrt{k}-\sqrt{k-1}$,
则ak+1=Sk+1-Sk
=$\frac{1}{2}$(ak+1+$\frac{1}{{a}_{k+1}}$)-$\frac{1}{2}$(ak+$\frac{1}{{a}_{k}}$)
=$\frac{1}{2}$(ak+1+$\frac{1}{{a}_{k+1}}$)-$\frac{1}{2}$($\sqrt{k}-\sqrt{k-1}$+$\frac{1}{\sqrt{k}-\sqrt{k-1}}$)
=$\frac{1}{2}$(ak+1+$\frac{1}{{a}_{k+1}}$)-$\frac{1}{2}$[$\sqrt{k}-\sqrt{k-1}$+($\sqrt{k}$+$\sqrt{k-1}$)]
=$\frac{1}{2}$(ak+1+$\frac{1}{{a}_{k+1}}$)-$\sqrt{k}$,
∴${{a}_{k+1}}^{2}$+2$\sqrt{k}$•ak+1-1=0,
解得:ak+1=$\sqrt{k+1}$-$\sqrt{k}$或ak+1=-$\sqrt{k+1}$-$\sqrt{k}$(舍),
∴ak+1=$\sqrt{k+1}$-$\sqrt{k}$,即当n=k+1时命题也成立;
由①、②可知:an=$\sqrt{n}$-$\sqrt{n-1}$;
(3)证明:∵an=$\sqrt{n}$-$\sqrt{n-1}$,
∴Sn=$\sqrt{n}$,
下面用数学归纳法来证明:
①当n=1时,显然$\frac{1}{2{S}_{1}}$=$\frac{1}{2}$<2(1-$\frac{1}{\sqrt{2}}$)=2-$\sqrt{2}$成立;
②假设当n=k时,有$\frac{1}{2{S}_{1}}$+$\frac{1}{3{S}_{2}}$+…+$\frac{1}{(k+1){S}_{k}}$<2(1-$\frac{1}{{S}_{k+1}}$)成立,
两边同时加上$\frac{1}{(k+2){S}_{k+1}}$,得:$\frac{1}{2{S}_{1}}$+$\frac{1}{3{S}_{2}}$+…+$\frac{1}{(k+1){S}_{k}}$+$\frac{1}{(k+2){S}_{k+1}}$<2(1-$\frac{1}{{S}_{k+1}}$)+$\frac{1}{(k+2){S}_{k+1}}$,
∵2(1-$\frac{1}{{S}_{k+1}}$)+$\frac{1}{(k+2){S}_{k+1}}$=2(1-$\frac{1}{\sqrt{k+1}}$)+$\frac{1}{(k+2)•\sqrt{k+1}}$
=2-[$\frac{2}{\sqrt{k+1}}$-$\frac{1}{(k+2)•\sqrt{k+1}}$]
=2-$\frac{2k+3}{(k+2)•\sqrt{k+1}}$
=2-$\frac{(k+2)+(k+1)}{(k+2)•\sqrt{k+1}}$,
又∵$\frac{(k+2)+(k+1)}{(k+2)•\sqrt{k+1}}$=$\frac{1}{\sqrt{k+1}}$+$\frac{\sqrt{k+1}}{k+2}$
≥2•$\sqrt{\frac{1}{\sqrt{k+1}}•\frac{\sqrt{k+1}}{k+2}}$=2•$\frac{1}{\sqrt{k+2}}$,
当且仅当$\frac{1}{\sqrt{k+1}}$=$\frac{\sqrt{k+1}}{k+2}$时取等号,
而$\frac{1}{\sqrt{k+1}}$≠$\frac{\sqrt{k+1}}{k+2}$,
故$\frac{(k+2)+(k+1)}{(k+2)•\sqrt{k+1}}$>2•$\frac{1}{\sqrt{k+2}}$,
∴2(1-$\frac{1}{{S}_{k+1}}$)+$\frac{1}{(k+2){S}_{k+1}}$<2-2•$\frac{1}{\sqrt{k+2}}$=2(1-$\frac{1}{\sqrt{k+2}}$)=2(1-$\frac{1}{{S}_{k+2}}$),
即当n=k+1时,命题也成立;
由①、②可知:$\frac{1}{{2{S_1}}}+\frac{1}{{3{S_2}}}+…+\frac{1}{{({n+1}){S_n}}}$<2(1-$\frac{1}{{{S_{n+1}}}}$),(n∈N*).

点评 本题是一道关于数列与不等式的综合题,考查运算求解能力,考查数学归纳法,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网