题目内容
17.在△ABC中,$\overrightarrow{m}$=(b,c-2a),$\overrightarrow{n}$=(cosC,cosB),若$\overrightarrow{m}$⊥$\overrightarrow{n}$,则B=( )A. | $\frac{5π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
分析 根据两向量垂直,数量积为0,利用三角函数的恒等变换以及正弦定理,即可求出B的值.
解答 解:△ABC中,$\overrightarrow{m}$=(b,c-2a),$\overrightarrow{n}$=(cosC,cosB),
且$\overrightarrow{m}$⊥$\overrightarrow{n}$,
∴$\overrightarrow{m}$•$\overrightarrow{n}$=bcosC+(c-2a)cosB=0;
由正弦定理得,sinBcosC+(sinC-2sinA)cosB=0,
即sinBcosC+cosBsinC=2sinAcosB,
∴sin(B+C)=2sinAcosB;
即sinA=2sinAcosB;
又0<A<π,∴sinA≠0,
∴cosB=$\frac{1}{2}$,
∴B=$\frac{π}{3}$.
故选:C.
点评 本题考查了平面向量数量积的应用问题,也考查了正弦定理的应用问题,是综合性题目.
练习册系列答案
相关题目
8.在△ABC中,点D在BC边上,且$\overrightarrow{CD}$=3$\overrightarrow{DB}$,$\overrightarrow{AD}$=r$\overrightarrow{AB}$+s$\overrightarrow{AC}$,则$\frac{r}{s}$的值是( )
A. | 1 | B. | $\frac{4}{3}$ | C. | $\frac{1}{3}$ | D. | 3 |
12.曲线y=$\frac{cosx}{x}$在$(\frac{π}{2},0)$处的切线斜率为( )
A. | $\frac{π}{2}$ | B. | -$\frac{π}{2}$ | C. | $\frac{2}{π}$ | D. | -$\frac{2}{π}$ |
15.函数y=3x的反函数是( )
A. | y=x3 | B. | y=$\root{3}{x}$ | C. | y=log3x | D. | y=($\frac{1}{3}$)x |