题目内容
【题目】选修4—5;不等式选讲.
已知函数.
(1)若的解集非空,求实数的取值范围;
(2)若正数满足, 为(1)中m可取到的最大值,求证: .
【答案】(1) ;(2)见解析.
【解析】试题分析:(1)讨论三种情况去绝对值符号,可得所以,由此得,解得;(2)利用分析法,由(1)知, ,所以,因为,要证,只需证,即证,只需证 即可得结果.
试题解析:(1)去绝对值符号,可得
所以,
所以,解得,
所以实数的取值范围为。
(2)由(1)知, ,所以。
因为,
所以要证,只需证,
即证,即证.
因为,所以只需证,
因为,∴成立,所以
解法二:x2+y2=2,x、y∈R+,x+y≥2xy
设:
证明:x+y-2xy=
=
令
, ∴
原式=
=
=
=
当时,
练习册系列答案
相关题目