题目内容
【题目】已知正方体,过对角线作平面交棱于点,交棱于点,下列正确的是( )
A.平面分正方体所得两部分的体积相等;
B.四边形一定是平行四边形;
C.平面与平面不可能垂直;
D.四边形的面积有最大值.
【答案】ABD
【解析】
由正方体的对称性可知,平面分正方体所得两部分的体积相等;依题意可证,,故四边形一定是平行四边形;当为棱中点时,平面,
平面平面;当与重合,当与重合时的面积有最大值.
解: 对于A:由正方体的对称性可知,平面分正方体所得两部分的体积相等,故A正确;
对于B:因为平面,平面平面,
平面平面,.
同理可证:,故四边形一定是平行四边形,故B正确;
对于C:当为棱中点时,平面,又因为平面,
所以平面平面,故C不正确;
对于D:当与重合,当与重合时的面积有最大值,故D正确.
故选:ABD
练习册系列答案
相关题目
【题目】新鲜的荔枝很好吃,但摘下后容易变黑,影响卖相.某大型超市进行扶贫工作,按计划每年六月从精准扶贫户中订购荔枝,每天进货量相同且每公斤20元,售价为每公斤24元,未售完的荔枝降价处理,以每公斤16元的价格当天全部处理完.根据往年情况,每天需求量与当天平均气温有关.如果平均气温不低于25摄氏度,需求量为公斤;如果平均气温位于摄氏度,需求量为公斤;如果平均气温位于摄氏度,需求量为公斤;如果平均气温低于15摄氏度,需求量为公斤.为了确定6月1日到30日的订购数量,统计了前三年6月1日到30日各天的平均气温数据,得到如图所示的频数分布表:
平均气温 | ||||||
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
(Ⅰ)假设该商场在这90天内每天进货100公斤,求这90天荔枝每天为该商场带来的平均利润(结果取整数);
(Ⅱ)若该商场每天进货量为200公斤,以这90天记录的各需求量的频率作为各需求量发生的概率,求当天该商场不亏损的概率.