题目内容
定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于________.
6
由已知得当-2≤x≤1时,
f(x)=x-2,
当1<x≤2时,f(x)=x3-2.
∵f(x)=x-2,f(x)=x3-2在定义域内都为增函数.
∴f(x)的最大值为f(2)=23-2=6.
f(x)=x-2,
当1<x≤2时,f(x)=x3-2.
∵f(x)=x-2,f(x)=x3-2在定义域内都为增函数.
∴f(x)的最大值为f(2)=23-2=6.
练习册系列答案
相关题目