题目内容
15.计算:$\underset{lim}{n→∞}$(1-$\frac{1}{3}$+$\frac{1}{9}$-$\frac{1}{27}$+…+$\frac{{(-1)}^{n-1}}{{3}^{n-1}}$)分析 由等比数列前n项和公式可得1-$\frac{1}{3}$+$\frac{1}{9}$-$\frac{1}{27}$+…+$\frac{{(-1)}^{n-1}}{{3}^{n-1}}$=$\frac{1[1-(-\frac{1}{3})^{n}]}{1-(-\frac{1}{3})}$=$\frac{3}{4}$[1-$(-\frac{1}{3})^{n}$],从而求极限即可.
解答 ∵1-$\frac{1}{3}$+$\frac{1}{9}$-$\frac{1}{27}$+…+$\frac{{(-1)}^{n-1}}{{3}^{n-1}}$
=$\frac{1[1-(-\frac{1}{3})^{n}]}{1-(-\frac{1}{3})}$=$\frac{3}{4}$[1-$(-\frac{1}{3})^{n}$],
∴$\underset{lim}{n→∞}$(1-$\frac{1}{3}$+$\frac{1}{9}$-$\frac{1}{27}$+…+$\frac{{(-1)}^{n-1}}{{3}^{n-1}}$)
=$\underset{lim}{n→∞}$$\frac{3}{4}$[1-$(-\frac{1}{3})^{n}$]=$\frac{3}{4}$.
点评 本题考查了等比数列前n项和公式的应用及极限的求法.
练习册系列答案
相关题目
6.某商店经营一批进价为每件4元的商品,在市场调查时发现,此商品的销售单价x与日销售量y之间有如下关系:
(1)求相关系数.并以此判断销售单价与日销售量之间具有怎样的线性相关关系?
(2)求x,y之间的线性回归方程;
(3)估计销售单价为多少元时,日利润最大?
(参考数据:$\sum_{i=1}^4{{x_i}{y_i}-4\overline x\overline y}$=-11,$\sum_{i=1}^4{x_i^2-4{{(\overline x)}^2}}$=5,$\sum_{i=1}^4{y_i^2-4{{(\overline y)}^2}}$=26)
用最小二乘法求线性回归方程系数公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sqrt{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}\sqrt{\sum_{i=1}^{n}{y}_{i}^{2}-n(\overline{y})^{2}}}$.
x | 5 | 6 | 7 | 8 |
y | 10 | 8 | 7 | 3 |
(2)求x,y之间的线性回归方程;
(3)估计销售单价为多少元时,日利润最大?
(参考数据:$\sum_{i=1}^4{{x_i}{y_i}-4\overline x\overline y}$=-11,$\sum_{i=1}^4{x_i^2-4{{(\overline x)}^2}}$=5,$\sum_{i=1}^4{y_i^2-4{{(\overline y)}^2}}$=26)
用最小二乘法求线性回归方程系数公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sqrt{\sum_{i=1}^{n}{x}_{i}^{2}-n(\overline{x})^{2}}\sqrt{\sum_{i=1}^{n}{y}_{i}^{2}-n(\overline{y})^{2}}}$.