题目内容

13.已知函数f(x)=x2+ax+b(a∈R,b∈R),A={x|x=f(x),x∈R},B={x|x=f[f(x)],x∈R},若A={-1,3}时,用列举法表示集合B.

分析 由A={x|f(x)=x}={x|x2+ax+b=x}={x|x2+(a-1)x+b=0}={-1,3},结合方程根与系数关系可求a,b,进而可求,f(x),然后代入B={x|f[f(x)]=x}整理可求

解答 解:∵A={x|f(x)=x}={x|x2+ax+b=x}={x|x2+(a-1)x+b=0}={-1,3}
∴-1,3是方程x2+(a-1)x+b=0的根
∴$\left\{\begin{array}{l}{1-a=2}\\{b=-3}\end{array}\right.$,即a=-1,b=-3,
∴f(x)=x2-x-3
∴B={x|f[f(x)]=x}={x|f(x2-x-3)=x}={x|(x2-x-3)2-(x2-x-3)-3=x}
化简可得,(x2-x-3)2-x2=0
∴(x2-3)(x2-2x-3)=0
∴x=$\sqrt{3}$或x=-$\sqrt{3}$或x=3或x=-1
∴B={$\sqrt{3}$,-$\sqrt{3}$,-1,3}.

点评 本题主要考查了二次函数与二次方程之间关系的相互转化,方程的根与系数关系的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网