题目内容

11.已知函数f(x)=lg($\sqrt{1+4{x}^{2}}$-2x)+$\frac{1}{2}$,则f(lg2)+f(lg$\frac{1}{2}$)=(  )
A.-1B.0C.1D.2

分析 由已知条件利用对数的运算法则和函数的性质求出f(x)+f(-x)=1,由此能求出f(lg2)+f(lg$\frac{1}{2}$)的值.

解答 解:∵f(x)=lg($\sqrt{1+4{x}^{2}}$-2x)+$\frac{1}{2}$,
∴f(x)+f(-x)=[lg($\sqrt{1+4{x}^{2}}$-2x)+$\frac{1}{2}$]+[lg($\sqrt{1+4{x}^{2}}$+2x)+$\frac{1}{2}$]
=[lg($\sqrt{1+4{x}^{2}}$-2x)+lg($\sqrt{1+4{x}^{2}}$+2x)]+1
=lg[(1+4x2-4x2)+1
=lg1+1
=1,
∴f(lg2)+f(lg$\frac{1}{2}$)=f(lg2)+f(-lg2)=1.
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意对数运算法则和函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网