题目内容
【题目】如图,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,
(1)求椭圆的方程.
(2)当时,求的面积.
【答案】(1)(2)
【解析】
(1)先求出圆心到直线的距离为,再根据得到,解之即得a的值,再根据c=1求出b的值得到椭圆的方程.(2)先求出,,再求得的面积.
(1)因为直线过点,且斜率.
所以直线的方程为,即,
所以圆心到直线的距离为,
又因为,圆的半径为,
所以,即,
解之得,或(舍去).
所以,
所以所示椭圆的方程为 .
(2)由(1)得,椭圆的右准线方程为,离心率,
则点到右准线的距离为,
所以,即,把代入椭圆方程得,,
因为直线的斜率,
所以,
因为直线经过和,
所以直线的方程为,
联立方程组得,
解得或,
所以,
所以的面积.
【题目】某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过站的地铁票价如下表:
乘坐站数 | |||
票价(元) |
现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过站,且他们各自在每个站下车的可能性是相同的.
(1)若甲、乙两人共付费元,则甲、乙下车方案共有多少种?
(2)若甲、乙两人共付费元,求甲比乙先到达目的地的概率.
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得到如下数据:
间隔时间/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这组数据中选取组数据求线性回归方程,再用剩下的组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数的差,若差值的绝对值都不超过,则称所求方程是“恰当回归方程”.
(1)从这组数据中随机选取2组数据,求选取的这组数据的间隔时间不相邻的概率;
(2)若选取的是后面组数据,求关于的线性回归方程,并判断此方程是否是“恰当回归方程”;
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:,.