题目内容

【题目】已知点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2 , l1⊥l2 , 线段AF的垂直平分线与l2交于点P. (Ⅰ)求点P的轨迹C的方程;
(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求 的取值范围.

【答案】解:(Ⅰ)∵点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2 , l1⊥l2 , 线段AF的垂直平分线与l2交于点P, ∴点P到点F(1,0)的距离等于它到直线l1的距离,
∴点P的轨迹是以点F为焦点,直线l1:x=﹣1为准线的抛物线,
∴曲线C的方程为y2=4x.
(Ⅱ)设P(x0 , y0),点M(﹣1,m),点N(﹣1,n),
直线PM的方程为:y﹣m= (x+1),
化简,得(y0﹣m)x﹣(x0+1)y+(y0﹣m)+m(x0+1)=0,
∵△PMN的内切圆的方程为x2+y2=1,
∴圆心(0,0)到直线PM的距离为1,即 =1,
=
由题意得x0>1,∴上式化简,得(x0﹣1)m2+2y0m﹣(x0+1)=0,
同理,有
∴m,n是关于t的方程(x0﹣1)t2+2y t﹣(x0+1)=0的两根,
∴m+n= ,mn=
∴|MN|=|m﹣n|=
,|y0|=2
∴|MN|=
直线PF的斜率 ,则k=| |=
= =
∵函数y=x﹣ 在(1,+∞)上单调递增,


∴0<
的取值范围是(0,
【解析】(Ⅰ)点P到点F(1,0)的距离等于它到直线l1的距离,从而点P的轨迹是以点F为焦点,直线l1:x=﹣1为准线的抛物线,由此能求出曲线C的方程.(Ⅱ)设P(x0 , y0),点M(﹣1,m),点N(﹣1,n),直线PM的方程为(y0﹣m)x﹣(x0+1)y+(y0﹣m)+m(x0+1)=0,△PMN的内切圆的方程为x2+y2=1,圆心(0,0)到直线PM的距离为1,由x0>1,得(x0﹣1)m2+2y0m﹣(x0+1)=0,同理, ,由此利用韦达定理、弦长公式、直线斜率,结合已知条件能求出 的取值范围.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网