题目内容
8.设不等式|2x-1|<1的解集为M,a∈M,b∈M(1)试比较ab+1与a+b的大小
(2)设max表示数集A的最大数,h=max{$\frac{2}{\sqrt{a}}$,$\frac{{a}^{2}+{b}^{2}}{\sqrt{ab}}$,$\frac{2}{\sqrt{b}}$},求证h≥2.
分析 (1)先求出a,b的范围,作差法比较大小即可;(2)求出h3的最小值,从而求出h的最小值.
解答 解:(1)M={x|0<x<1},(ab+1)-(a+b)=(a-1)(b-1),
∵a,b∈M,∴a<1,b<1,∴a-1<0,b-1<0,
∴(a-1)(b-1)>0,∴ab+1>a+b;
(2)证明:由h=max{$\frac{2}{\sqrt{a}}$,$\frac{{a}^{2}+{b}^{2}}{\sqrt{ab}}$,$\frac{2}{\sqrt{b}}$},
得h≥$\frac{2}{\sqrt{a}}$,h≥$\frac{{a}^{2}+{b}^{2}}{\sqrt{ab}}$,h≥$\frac{2}{\sqrt{b}}$,
所以h3≥$\frac{2}{\sqrt{a}}$•$\frac{{a}^{2}+{b}^{2}}{\sqrt{ab}}$•$\frac{2}{\sqrt{b}}$=$\frac{4({a}^{2}+{b}^{2})}{ab}$≥8,
故h≥2.
点评 本题考查了不等式的大小比较,考查绝对值不等式的解法,是一道中档题.
练习册系列答案
相关题目
2.在平行四边形ABCD中,E,F分别是BC,CD的中点,DE交AF于点G,记$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,则$\overrightarrow{AG}$=( )
A. | $\frac{2}{5}$$\overrightarrow{a}$-$\frac{4}{5}$$\overrightarrow{b}$ | B. | $\frac{2}{5}$$\overrightarrow{a}$+$\frac{4}{5}$$\overrightarrow{b}$ | C. | -$\frac{2}{5}$$\overrightarrow{a}$+$\frac{4}{5}$$\overrightarrow{b}$ | D. | -$\frac{2}{5}$$\overrightarrow{a}$-$\frac{4}{5}$$\overrightarrow{b}$ |
3.已知两个实数a、b(a≠b)满足aea=beb,命题p:lna+a=lnb+b;命题q:(a+1)(b+1)<0.则下面命题是真命题的是( )
A. | p∨(¬q) | B. | p∧(¬q) | C. | p∨q | D. | p∧q |
20.已知f(x)=x3+ax2+bx+a2在x=1处的极值为10,则a+b=( )
A. | 0或-7 | B. | -7 | C. | 0 | D. | 7 |
3.下列参数方程中,与普通方程x2+y-1=0等价的参数方程是( )
A. | $\left\{{\begin{array}{l}{x=sinφ}\\{y={{cos}^2}φ}\end{array}}\right.$(φ为参数) | B. | $\left\{\begin{array}{l}{x=cosφ}\\{y=si{n}^{2}φ}\end{array}\right.$(φ为参数) | ||
C. | $\left\{\begin{array}{l}{x=\sqrt{1-r}}\\{y=r}\end{array}\right.$(r为参数) | D. | $\left\{\begin{array}{l}{x=tanφ}\\{y=1-ta{n}^{2}φ}\end{array}\right.$(φ为参数) |
13.在等差数列{an}中,2an+1=an+an+2成立.类比上述性质,在等比数列{bn}中,有( )
A. | 2bn+1=bn+bn+2 | B. | bn+12=bn•bn+2 | C. | 2bn+1=bn•bn+2 | D. | bn+12=bn+bn+2 |
18.函数f(x)=log${\;}_{\frac{1}{2}}$x,则使log${\;}_{\frac{1}{2}}$x>1的集合是( )
A. | {x|x$<\frac{1}{2}$} | B. | {x|x$>\frac{1}{2}$} | C. | {x|0$<x<\frac{1}{2}$} | D. | {x|x>1} |