题目内容
【题目】已知函数。
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数在上是减函数,求实数的取值范围。
【答案】(1) 函数f(x)的单调递减区间是(0, );单调递增区间是(,+∞);(2) a≤-.
【解析】试题分析:(Ⅰ)先求出函数的导数,再通过讨论a的范围,从而求出其单调区间,(Ⅱ)由g(x)=+x2+2aln x得g′(x)=-+2x+,建立新函数,求出其最小值,解出即可.
试题解析:
(Ⅰ)函数f(x)的定义域为(0,+∞).
①当a≥0时,f′(x)>0,f(x)的单调递增区间为(0,+∞);
②当a<0时,f′(x)=.
当x变化时,f′(x),f(x)的变化情况如下:
x | (0, ) | (,+∞) | |
f′(x) | - | 0 | + |
f(x) | 极小值 |
由上表可知,函数f(x)的单调递减区间是(0, );单调递增区间是(,+∞).
(Ⅱ )由g(x)=+x2+2aln x,得g′(x)=-+2x+,
由已知函数g(x)为[1,2]上的单调减函数,则g′(x)≤0在[1,2]上恒成立,
即-+2x+≤0在[1,2]上恒成立.即a≤-x2在[1,2]上恒成立.
令,则h′(x)=--2x=-(+2x)
,所以h(x)在[1,2]上为减函数,
h(x)min=h(2)=-, 所以a≤-.
【题目】当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,并制成下面的列联表:
及格 | 不及格 | 合计 | |
很少使用手机 | 20 | 6 | 26 |
经常使用手机 | 10 | 14 | 24 |
合计 | 30 | 20 | 50 |
(1)判断是否有的把握认为经常使用手机对学习成绩有影响?
(2)从这50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数学题,甲、乙独立解出此题的概率分别为,且 ,若,则此二人适合结为学习上互帮互助的“学习师徒”,记为两人中解出此题的人数,若的数学期望,问两人是否适合结为“学习师徒”?
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
参考公式及数据: ,其中.