题目内容
设函数f(x)=
(x>0),数列{an}满足a1=1,an=f
(n∈N*,且n≥2).
(1)求数列{an}的通项公式;
(2)设Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1·anan+1,若Tn≥tn2对n∈N*恒成立,求实数t的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035285562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035300689.png)
(1)求数列{an}的通项公式;
(2)设Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1·anan+1,若Tn≥tn2对n∈N*恒成立,求实数t的取值范围.
(1)an=
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035316708.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035300545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035316708.png)
(1)因为an=f
=
=an-1+
(n∈N*,且n≥2),
所以an-an-1=
.因为a1=1,
所以数列{an}是以1为首项,公差为
的等差数列.
所以an=
.
(2)①当n=2m,m∈N*时,
Tn=T2m=a1a2-a2a3+a3a4-a4a5+…+(-1)2m-1a2ma2m+1
=a2(a1-a3)+a4(a3-a5)+…+a2m(a2m-1-a2m+1)
=-
(a2+a4+…+a2m)=-
×
×m
=-
(8m2+12m)=-
(2n2+6n).
②当n=2m-1,m∈N*时,
Tn=T2m-1=T2m-(-1)2m-1a2ma2m+1=-
(8m2+12m)+
(16m2+16m+3)
=
(8m2+4m+3)=
(2n2+6n+7).
所以Tn=
要使Tn≥tn2对n∈N*恒成立,只要使-
(2n2+6n)≥tn2,(n为正偶数)恒成立.
只要使-
≥t,对n∈N*恒成立,故实数t的取值范围为![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035316708.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035300689.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035378909.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035378382.png)
所以an-an-1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035378382.png)
所以数列{an}是以1为首项,公差为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035378382.png)
所以an=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035300545.png)
(2)①当n=2m,m∈N*时,
Tn=T2m=a1a2-a2a3+a3a4-a4a5+…+(-1)2m-1a2ma2m+1
=a2(a1-a3)+a4(a3-a5)+…+a2m(a2m-1-a2m+1)
=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035441373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035441373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035472605.png)
=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035487330.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035487330.png)
②当n=2m-1,m∈N*时,
Tn=T2m-1=T2m-(-1)2m-1a2ma2m+1=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035487330.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035487330.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035487330.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035487330.png)
所以Tn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240350356752170.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035487330.png)
只要使-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035706732.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035035316708.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目