题目内容
【题目】已知:已知函数
(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;
(Ⅱ)若a=1,求f(x)的极值;
【答案】(1)-2; (2)极小值为,极大值为.
【解析】分析:(1)求出曲线y=f(x)在点P(2,f(2))处的导数值等于切线的斜率为﹣6,即可求出;
(2)通过a=1时,利用导函数为0,判断导数符号,即可求f(x)的极值.
详解:(Ⅰ)因为f′(x)=﹣x2+x+2a,
曲线y=f(x)在点P(2,f(2))处的切线的斜率k=f′(2)=2a﹣2,
2a﹣2=﹣6,a=﹣2
(Ⅱ)当a=1时, ,f′(x)=﹣x2+x+2=﹣(x+1)(x﹣2)
x | (﹣∞,﹣1) | ﹣1 | (﹣1,2) | 2 | (2,+∞) |
f′(x) | ﹣ | 0 | + | 0 | ﹣ |
f(x) | 单调减 |
| 单调增 |
| 单调减 |
所以f(x)的极大值为 ,f(x)的极小值为 .
练习册系列答案
相关题目
【题目】某科研课题组通过一款手机APP软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表
周跑量(km/周) | |||||||||
人数 | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答题卡上补全该市1000名跑步爱好者周跑量的频率分布直方图:
注:请先用铅笔画,确定后再用黑色水笔描黑
(2)根据以上图表数据计算得样本的平均数为,试求样本的中位数(保留一位小数),并用平均数、中位数等数字特征估计该市跑步爱好者周跑量的分布特点
(3)根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
类别 | 休闲跑者 | 核心跑者 | 精英跑者 |
装备价格(单位:元) | 2500 | 4000 | 4500 |
根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?