题目内容
【题目】成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在评定为“优”,奖励3面小红旗;得分在
评定为“良”,奖励2面小红旗;得分在
评定为“中”,奖励1面小红旗;得分在
评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如下图:
(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;
(2)学校用分层抽样的方法,从评定等级为“优”、“良”、“中”、“差”的班级中抽取10个班级,再从这10个班级中随机抽取2个班级进行抽样复核,记抽样复核的2个班级获得的奖励小红旗面数和为,求
的分布列与数学期望
.
【答案】(1)中位数为70分.(2)见解析,
【解析】
(1)根据频率分布直方图中中位数的计算公式计算即可.
(2)先根据分层抽样确定10个班级中优”、“良”、“中”、“差”的班级的人数,再根据奖励小红旗的面数确定的可能取值,再根据古典概型概率计算公式求解
每个取值对应的概率,最后列出分布列求解数学期望.
解:(1)得分的频率为
;
得分的频率为
;
得分的频率为
;
所以得分的频率为
.
设班级得分的中位数为分,于是
,解得
.
所以班级卫生量化打分检查得分的中位数为70分.
(2)由(1)知题意“优”、“良”、“中”、“差”的频率分别为0.3,0.4,0.2,0.1.又班级总数为40.于是“优”、“良”、“中”、“差”的班级个数分别为12,16,8,4.
分层抽样的方法抽取的“优”、“良”、“中”、“差”的班级个数分别为3,4,2,1.
由题意可得的所有可能取值为1,2,3,4,5,6.
,
,
,
,
,
.
所以的分布列为
1 | 2 | 3 | 4 | 5 | 6 | |
.
所以的数学期望
.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】按照水果市场的需要等因素,水果种植户把某种成熟后的水果按其直径的大小分为不同等级.某商家计划从该种植户那里购进一批这种水果销售.为了了解这种水果的质量等级情况,现随机抽取了100个这种水果,统计得到如下直径分布表(单位:mm):
d | |||||
等级 | 三级品 | 二级品 | 一级品 | 特级品 | 特级品 |
频数 | 1 | m | 29 | n | 7 |
用分层抽样的方法从其中的一级品和特级品共抽取6个,其中一级品2个.
(1)估计这批水果中特级品的比例;
(2)已知样本中这批水果不按等级混装的话20个约1斤,该种植户有20000斤这种水果待售,商家提出两种收购方案:
方案A:以6.5元/斤收购;
方案B:以级别分装收购,每袋20个,特级品8元/袋,一级品5元/袋,二级品4元/袋,三级品3元/袋.
用样本的频率分布估计总体分布,问哪个方案种植户的收益更高?并说明理由.