题目内容
【题目】如图1,,点为线段的中点,点为线段上靠近的三等分点.现沿进行翻折,得到四棱锥,如图2,且.在图2中:
(1)求证:平面;
(2)求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2)
【解析】
(1)由的特殊直角三角形可知AC,再由余弦定理可求得MN,进而由勾股定理可证,且,最后由线面垂直的判定定理即可得证;
(2)在图1中,,所以,即,即可以为原点,建立空间直角坐标系,即可表示与平面的法向量,最后由空间中向量法求得线面角的正弦值.
(1)证明:因为,所以.
由题意,得,所以.
在中,由余弦定理,得,
则,所以在图2中,,所以.
又,且,即在图2中,,所以,
又,平面,所以平面.
(2)在图1中,,所以,即.
以为原点,建立如图所示的空间直角坐标系,由(1)可知,,,,,则,.
设平面的法向量为,
则即解得令,则.
设直线与平面所成角为,又,
则.
【题目】新能源汽车已经走进我们的生活,逐渐为大家所青睐.现在有某品牌的新能源汽车在甲市进行预售,预售场面异常火爆,故该经销商采用竞价策略基本规则是:①竞价者都是网络报价,每个人并不知晓其他人的报价,也不知道参与竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期汽车配额,按照竞价人的出价从高到低分配名额.某人拟参加2020年6月份的汽车竞价,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如下表)
月份 | 2020.01 | 2020.02 | 2020.03 | 2020.04 | 2020.05 |
月份编号 | 1 | 2 | 3 | 4 | 5 |
竞拍人数(万人) | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(1)由收集数据的散点图发现,可用线性回归模型拟合竞价人数y(万人)与月份编号t之间的相关关系.请用最小二乘法求y关于t的线性回归方程:,并预测2020年6月份(月份编号为6)参与竞价的人数;
(2)某市场调研机构对200位拟参加2020年6月份汽车竞价人员的报价进行了一个抽样调查,得到如表所示的频数表:
报价区间(万元) | ||||||
频数 | 20 | 60 | 60 | 30 | 20 | 10 |
(i)求这200位竞价人员报价的平均值和样本方差s2(同一区间的报价用该价格区间的中点值代替)
(ii)假设所有参与竞价人员的报价X可视为服从正态分布且μ与σ2可分别由(i)中所示的样本平均数及s2估计.若2020年月6份计划提供的新能源车辆数为3174,根据市场调研,最低成交价高于样本平均数,请你预测(需说明理由)最低成交价.
参考公式及数据:
①回归方程,其中
②
③若随机变量X服从正态分布则
.