题目内容
【题目】已知数列{an}的通项公式an=﹣n2+8n﹣12,前n项和为Sn,若n>m,则Sn﹣Sm的最大值是( )
A.5B.10C.15D.20
【答案】B
【解析】
由数列的通项公式可得Sn﹣Sm=am+1+am+2+…+an,可得当am+1+am+2+…+an最大时,Sn﹣Sm取得最大值,由an≥0,解不等式,计算即可得到所求最大值.
解:根据题意,数列{an}的通项公式是,
其前n项和是Sn,n>m,有Sn﹣Sm=am+1+am+2+…+an,
即当am+1+am+2+…+an最大时,Sn﹣Sm取得最大值;
若,且n∈N+,解得2≤n≤6,
即当2≤n≤6时,an的值为正.
当n=6,m=2时,S6﹣S2=a3+a4+a5+a6=3+4+3+0=10,
此时Sn﹣Sm取得最大值10.
故选:B.
【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这50人根据其满意度评分值(百分制)按照,,……分成5组,根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示),计算,,,的值分别为( )
组别 | 分组 | 频数 | 频率 |
第1组 | 8 | 0.16 | |
第2组 | ■ | ||
第3组 | 20 | 0.40 | |
第4组 | ■ | 0.08 | |
第5组 | 2 | ||
合计 | ■ | ■ |
A.16,0.04,0.032,0.004B.16,0.4,0.032,0.004
C.16,0.04,0.32,0.004D.12,0.04,0.032,0.04
【题目】为了调查某社区居民每天参加健身的时间,某机构在该社区随机采访男性、女性各50名,其中每人每天的健身时间不少于1小时称为“健身族”,否则称其为"非健身族”,调查结果如下:
健身族 | 非健身族 | 合计 | |
男性 | 40 | 10 | 50 |
女性 | 30 | 20 | 50 |
合计 | 70 | 30 | 100 |
(1)若居民每人每天的平均健身时间不低于70分钟,则称该社区为“健身社区”. 已知被随机采访的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分时间分別是1.2小时,0.8小时,1.5小时,0.7小时,试估计该社区可否称为“健身社区”?
(2)根据以上数据,能否在犯错误的概率不超过5%的情况下认为“健身族”与“性别”有关?
参考公式: ,其中.
参考数据:
0. 50 | 0. 40 | 0. 25 | 0. 05 | 0. 025 | 0. 010 | |
0. 455 | 0. 708 | 1. 321 | 3. 840 | 5. 024 | 6. 635 |