题目内容
4.已知{an}是递增等差数列,a1=2,且a1,a2,a5成等比数列,则此数列的公差d=4.分析 设出公差,利用已知条件列出方程求解即可.
解答 解:设等差数列的公差为d,依题意,2,2+d,2+4d成等比数列,∴(2+d)2=2(2+4d),解得d=0(舍去)或d=4.
故答案为:4.
点评 本题考查等差数列以及等比数列的应用,基本知识的考查.
练习册系列答案
相关题目
14.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),其部分图象如下图所示,且直线y=A与曲线y=f(x)(-$\frac{π}{24}$$≤x≤\frac{11π}{24}$)所围成的封闭图形的面积为π,则f($\frac{π}{8}$)+f($\frac{2π}{8}$)+f($\frac{3π}{8}$)+…+f($\frac{2015π}{8})$的值为( )
A. | -$\sqrt{3}$ | B. | -1-$\sqrt{3}$ | C. | $\sqrt{3}$ | D. | -1+$\sqrt{3}$ |
19.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,y),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则y=( )
A. | -1 | B. | 1 | C. | -4 | D. | 4 |
9.甲、乙两人在2015年1月至5月的纯收入(单位:千元)的数据如下表:
(1)由表中数据直观分析,甲、乙两人中谁的纯收入较稳定?
(2)求y关于x的线性回归方程,并预测甲在6月份的纯收入;
(3)现从乙这5个月的纯收入中,随机抽取两个月,求恰有1个月的纯收入在区间(3,3.5)中的概率.
月份x | 1 | 2 | 3 | 4 | 5 |
甲的纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 |
乙的纯收入z | 2.8 | 3.4 | 3.8 | 4.5 | 5.5 |
(2)求y关于x的线性回归方程,并预测甲在6月份的纯收入;
(3)现从乙这5个月的纯收入中,随机抽取两个月,求恰有1个月的纯收入在区间(3,3.5)中的概率.
16.已知偶函数f(x),当x∈[0,2)时,f(x)=2sinx,当x∈[2,+∞)时,f(x)=log2x,则$f({-\frac{π}{3}})+f(4)$=( )
A. | $\sqrt{3}+2$ | B. | 1 | C. | 3 | D. | $-\sqrt{3}+2$ |