题目内容
【题目】已知函数f(x)=(2-a)lnx++2ax.
(1)当a<0时,讨论f(x)的单调性;
(2)若对任意的a∈(-3,-2),x1,x2∈[1,3],恒有(m+ln 3)a-2ln 3>|f(x1)-f(x2)|成立,求实数m的取值范围.
【答案】(1)见解析(2) (-∞,- ].
【解析】试题分析:(1)对原函数求导,f′(x)=,分a=-2,-2<a<0,a<-2,三种情况讨论导函数的正负,得原函数的单调性;(2)根据第一问知道当a∈(-3,-2)时,函数f(x)在区间[1,3]上单调递减,故得到f(x)max=f(1)=1+2a,f(x)min=f(3)=(2-a)ln 3++6a,问题等价于am>-4a,m<-4,m≤(-4)min。
解析:
(1)求导可得f′(x)=-+2a=,
令f′(x)=0,得x1=,x2=-,
当a=-2时,f′(x)≤0,函数f(x)在定义域(0,+∞)内单调递减;
当-2<a<0时,在区间(0, ),(-,+∞)上f′(x)<0,f(x)单调递减,在区间(,- )上f′(x)>0,f(x)单调递增;
当a<-2时,在区间(0,- ),(,+∞)上f′(x)<0,f(x)单调递减,在区间(-, )上f′(x)>0,f(x)单调递增.
(2)由(1)知当a∈(-3,-2)时,函数f(x)在区间[1,3]上单调递减,
所以当x∈[1,3]时,f(x)max=f(1)=1+2a,f(x)min=f(3)=(2-a)ln 3++6a.
问题等价于:对任意的a∈(-3,-2),恒有(m+ln 3)a-2ln 3>1+2a-(2-a)ln 3--6a成立,即am>-4a,
因为a<0,所以m<-4,
因为a∈(-3,-2),
所以只需m≤(-4)min,
所以实数m的取值范围为(-∞,- ].