题目内容

【题目】椭圆上一点关于原点的对称点为 为其右焦点,若,设,且,则该椭圆离心率的最大值为(

A. B. C. D. 1

【答案】A

【解析】由题知AFBF,根据椭圆的对称性,AFBF(其中F是椭圆的左焦点),因此四边形AFBF是矩形,于是,|AB|=|FF|=2c ,根据椭圆的定义,|AF|+|AF|=2a

∴椭圆离心率

e的最大值为,故选A.

椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:

①求出ac,代入公式

②只需要根据一个条件得到关于abc的齐次式,结合b2a2c2转化为ac的齐次式,然后等式(不等式)两边分别除以aa2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网