题目内容
【题目】过点P(-4,0)的动直线l与抛物线相交于D、E两点,已知当l的斜率为时,.
(1)求抛物线C的方程;
(2)设的中垂线在轴上的截距为,求的取值范围.
【答案】;
【解析】
根据题意,求出直线方程并与抛物线方程联立,利用韦达定理,结合,即可求出抛物线C的方程;
设,的中点为,把直线l方程与抛物线方程联立,利用判别式求出的取值范围,利用韦达定理求出,进而求出的中垂线方程,即可求得在轴上的截距的表达式,然后根据的取值范围求解即可.
由题意可知,直线l的方程为,
与抛物线方程方程联立可得,
,
设,由韦达定理可得,
,
因为,,
所以,解得,
所以抛物线C的方程为;
设,的中点为,
由,消去可得,
所以判别式,解得或,
由韦达定理可得,,
所以的中垂线方程为,
令则,
因为或,所以即为所求.
【题目】2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:
男生测试情况:
抽样情况 | 病残免试 | 不合格 | 合格 | 良好 | 优秀 |
人数 | 5 | 10 | 15 | 47 |
女生测试情况
抽样情况 | 病残免试 | 不合格 | 合格 | 良好 | 优秀 |
人数 | 2 | 3 | 10 | 2 |
(1)现从抽取的1000名且测试等级为“优秀”的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;
(2)若测试等级为“良好”或“优秀”的学生为“体育达人”,其它等级的学生(含病残免试)为“非体育达人”,根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为体育达人”与性别有关?
男性 | 女性 | 总计 | |
体育达人 | |||
非体育达人 | |||
总计 |
临界值表:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:( ,其中)
【题目】为认真贯彻落实党中央国务院决策部署,坚持“房子是用来住的,不是用来炒的”定位,坚持调控政策的连续性和稳定性,进一步稳定某省市商品住房市场,该市人民政府办公厅出台了相关文件来控制房价,并取得了一定效果,下表是2019年2月至6月以来该市某城区的房价均值数据:
(月份) | 2 | 3 | 4 | 5 | 6 |
(房价均价:千元/平方米) | 9.80 | 9.70 | 9.30 | 9.20 |
已知:.
(1)若变量、具有线性相关关系,求房价均价(千元/平方米)关于月份的线性回归方程;
(2)根据线性回归方程预测该市某城区7月份的房价.
(参考公式:用最小二乘法求线性回归方程的系数公式)