题目内容
设Sn等比数列{an}的前n项和,且a2=
,S2=
(1)求数列{an}的通项;
(2)设bn=
,求数列{bn}的前n项和Sn.
1 |
9 |
4 |
9 |
(1)求数列{an}的通项;
(2)设bn=
n |
an |
(1)设首项为a1,公比为q,由a2=
,S2=
,
得:
,
解得:
,
∴an=
;.
(2)∵bn=
=
=n•3n,
∴Sn=3+2×32+3×33+…+n•3n,①
∴3Sn=32+2×33+3×34+…+(n-1)•3n+n•3n+1,②
②-①得2Sn=n•3n+1-(3+32+33+…+3n)=n•3n+1-
=
+
,
∴Sn=
+
.
1 |
9 |
4 |
9 |
得:
|
解得:
|
∴an=
1 |
3n |
(2)∵bn=
n |
an |
n | ||
|
∴Sn=3+2×32+3×33+…+n•3n,①
∴3Sn=32+2×33+3×34+…+(n-1)•3n+n•3n+1,②
②-①得2Sn=n•3n+1-(3+32+33+…+3n)=n•3n+1-
3(1-3n) |
1-3 |
(2n-1)×3n+1 |
2 |
3 |
2 |
∴Sn=
(2n-1)×3n+1 |
4 |
3 |
4 |
练习册系列答案
相关题目