题目内容
定义一种新运算*,满足n*k=nλk-1(n,k∈N*λ为非零常数).
(1)对于任意给定的k,设an=n*k(n=1,2,3,…),证明:数列{an}是等差数列;
(2)对于任意给定的n,设bk=n*k(k=1,2,3…),证明:数列{bk}是等比数列;
(3)设cn=n*n(n=1,2,3,..),试求数列{cn}的前n项和Sn.
(1)对于任意给定的k,设an=n*k(n=1,2,3,…),证明:数列{an}是等差数列;
(2)对于任意给定的n,设bk=n*k(k=1,2,3…),证明:数列{bk}是等比数列;
(3)设cn=n*n(n=1,2,3,..),试求数列{cn}的前n项和Sn.
(1)证明:∵n*k=nλk-1(n,k∈N*λ为非零常数),
∴an=n*k=nλk-1(n=1,2,3,…),
∴an+1-an=(n+1)λk-1-nλk-1=λk-1.
∵k,λ为非零常数,∴数列{an}是等差数列.
(2)证明:∵n*k=nλk-1(n,k∈N*,λ为非零常数),
∴bk=n*k=nλk-1(k=1,2,3,…),
∴
=
=λ.
∵λ为非零常数,
∴数列{bk}是等比数列.
(3)∵n*k=nλk-1(n,k∈N*,λ为非零常数),
∴n*n=nλn-1.
则Sn=c1+c2+…+cn=λ0+2λ+3λ2+…+nλn-1,
①当λ=1时,Sn=1+2+3+…+n=
.
②当λ≠1时,λSn=λ+2λ2+3λ3+…+nλn.
①-②得:(1-λ)Sn=1+λ+λ2+…+λn-1-nλn,
∴Sn=
-
,
综上可知,Sn=
.
∴an=n*k=nλk-1(n=1,2,3,…),
∴an+1-an=(n+1)λk-1-nλk-1=λk-1.
∵k,λ为非零常数,∴数列{an}是等差数列.
(2)证明:∵n*k=nλk-1(n,k∈N*,λ为非零常数),
∴bk=n*k=nλk-1(k=1,2,3,…),
∴
bk+1 |
bk |
nλk |
nλk-1 |
∵λ为非零常数,
∴数列{bk}是等比数列.
(3)∵n*k=nλk-1(n,k∈N*,λ为非零常数),
∴n*n=nλn-1.
则Sn=c1+c2+…+cn=λ0+2λ+3λ2+…+nλn-1,
①当λ=1时,Sn=1+2+3+…+n=
n(n+1) |
2 |
②当λ≠1时,λSn=λ+2λ2+3λ3+…+nλn.
①-②得:(1-λ)Sn=1+λ+λ2+…+λn-1-nλn,
∴Sn=
1-λn |
(1-λ)2 |
nλn |
1-λ |
综上可知,Sn=
|
练习册系列答案
相关题目