题目内容

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足向量 =(cosA,cosB), =(a,2c﹣b),
(1)求角A的大小;
(2)若a=2 ,求△ABC面积的最大值.

【答案】
(1)解:∵向量 =(cosA,cosB), =(a,2c﹣b),

∴(2c﹣b)cosA=acosB,

由正弦定理得:(2sinC﹣sinB)cosA=sinAcosB,

整理得2sinCcosA=sin(A+B)=sinC;

在△ABC中,sinC≠0,∴cosA=

∵A∈(0,π),故


(2)解:由余弦定理,cosA= =

又a=2 ,∴b2+c2﹣20=bc≥2bc﹣20,

得bc≤20,当且仅当b=c时取到“=”;

∴SABC= bcsinA≤5

所以三角形面积的最大值为5


【解析】(1)根据平面向量的共线定理,利用正弦定理,即可求出A的值;(2)根据余弦定理,利用基本不等式,即可求出三角形面积的最大值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网