题目内容
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足向量 =(cosA,cosB), =(a,2c﹣b), ∥ .
(1)求角A的大小;
(2)若a=2 ,求△ABC面积的最大值.
【答案】
(1)解:∵向量 =(cosA,cosB), =(a,2c﹣b), ∥ ,
∴(2c﹣b)cosA=acosB,
由正弦定理得:(2sinC﹣sinB)cosA=sinAcosB,
整理得2sinCcosA=sin(A+B)=sinC;
在△ABC中,sinC≠0,∴cosA= ,
∵A∈(0,π),故 ;
(2)解:由余弦定理,cosA= = ,
又a=2 ,∴b2+c2﹣20=bc≥2bc﹣20,
得bc≤20,当且仅当b=c时取到“=”;
∴S△ABC= bcsinA≤5 ,
所以三角形面积的最大值为5
【解析】(1)根据平面向量的共线定理,利用正弦定理,即可求出A的值;(2)根据余弦定理,利用基本不等式,即可求出三角形面积的最大值.
练习册系列答案
相关题目