题目内容

【题目】已知函数f(x)=﹣x2+bln(x+1)在[0,+∞)上单调递减,则b的取值范围(
A.[0,+∞)
B.[﹣ ,+∞)
C.(﹣∞,0]
D.(﹣∞,﹣ ]

【答案】C
【解析】解:由题意知函数f(x)=﹣x2+bln(x+1)的定义域为(﹣1,+∞);
则f'(x)=﹣2x+
f(x)在[0,+∞)上单调递减,则f'(x)在[0,+∞)上恒有f'(x)≤0;
所以:﹣2x+ ≤0b≤2x(x+1)
令g(x)=2x(x+1),则g(x)在[0,+∞)上的最小值为g(0)=0:
所以b的取值范围为:(﹣∞,0]
故选:C
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网