题目内容
【题目】如图,四棱锥P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD为正三角形.且PA=2.
(1)证明:平面PAB⊥平面PBC;
(2)若点P到底面ABCD的距离为2,E是线段PD上一点,且PB∥平面ACE,求四面体A-CDE的体积.
【答案】(1)见解析;(2)
【解析】
(1)证明AB⊥PB,AB⊥BC,推出AB⊥平面PBC,然后即可证明平面PAB⊥平面PBC.
(2)设BD,AC交于点O,连接OE,点P到平面ABCD的距离为2,点E到平面ABCD的距离为h==,通过VA-CDE=VE-CDA,转化求解四面体A-CDE的体积.
(1),且,,
又为正三角形,,又,,
,,又,,,,
平面,又平面,
平面平面.
(2)如图,设,交于点,,
且,,连接,
平面,,则,
又点到平面的距离为2,
点到平面的距离为,
,
即四面体的体积为.
练习册系列答案
相关题目