题目内容
10.若直线 l1和l2 是异面直线,l1在平面 α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A. | l与l1,l2都不相交 | B. | l与l1,l2都相交 | ||
C. | l至多与l1,l2中的一条相交 | D. | l至少与l1,l2中的一条相交 |
分析 可以画出图形来说明l与l1,l2的位置关系,从而可判断出A,B,C是错误的,而对于D,可假设不正确,这样l便和l1,l2都不相交,这样可推出和l1,l2异面矛盾,这样便说明D正确.
解答 解:A.l与l1,l2可以相交,如图:
∴该选项错误;
B.l可以和l1,l2中的一个平行,如上图,∴该选项错误;
C.l可以和l1,l2都相交,如下图:
,∴该选项错误;
D.“l至少与l1,l2中的一条相交”正确,假如l和l1,l2都不相交;
∵l和l1,l2都共面;
∴l和l1,l2都平行;
∴l1∥l2,l1和l2共面,这样便不符合已知的l1和l2异面;
∴该选项正确.
故选D.
点评 考查异面直线的概念,在直接说明一个命题正确困难的时候,可说明它的反面不正确.
练习册系列答案
相关题目
20.已知直线y=$\frac{1}{3}x+\frac{2}{3}$与幂函数f(x)=xm(m≠0)的图象将于A、B两点,且|AB|=$\sqrt{10}$,则m的值为( )
A. | -2 | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
2.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
19.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )
A. | $\frac{1}{8}$ | B. | $\frac{1}{7}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{5}$ |
20.某工厂36名工人年龄数据如图:
(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;
(2)计算(1)中样本的均值$\overline{x}$和方差s2;
(3)36名工人中年龄在$\overline{x}$-s和$\overline{x}$+s之间有多少人?所占百分比是多少(精确到0.01%)?
工人编号 | 年龄 | 工人编号 | 年龄 | 工人编号 | 年龄 | 工人编号 | 年龄 |
1 2 3 4 5 6 7 8 9 | 40 44 40 41 33 40 45 42 43 | 10 11 12 13 14 15 16 17 18 | 36 31 38 39 43 45 39 38 36 | 19 20 21 22 23 24 25 26 27 | 27 43 41 37 34 42 37 44 42 | 28 29 30 31 32 33 34 35 36 | 34 39 43 38 42 53 37 49 39 |
(2)计算(1)中样本的均值$\overline{x}$和方差s2;
(3)36名工人中年龄在$\overline{x}$-s和$\overline{x}$+s之间有多少人?所占百分比是多少(精确到0.01%)?