题目内容
如图,在边长为1的等边△ABC中,D、E分别为边AB、AC上的点,若A关于直线DE的对称点A1恰好在线段BC上,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240055242512412.png)
(1)①设A1B=x,用x表示AD;②设∠A1AB=θ∈[0º,60º],用θ表示AD
(2)求AD长度的最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240055242512412.png)
(1)①设A1B=x,用x表示AD;②设∠A1AB=θ∈[0º,60º],用θ表示AD
(2)求AD长度的最小值.
(1) y=
(0≤x≤1), AD=
·
=
θ∈[0º,60º]
(2) AD长度的最小值为2
-3 当且仅当
时取得最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524267584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524282338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524501625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240055245161077.png)
(2) AD长度的最小值为2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563560.png)
试题分析:(1)设A1B=x,AD=y,在△A1BD中,BD=1-y,A1D=AD=y,有余弦定理得
y2=(1-y)2+x2-2x(1-y)cos60º=(1-y)2+x2-x+xy∴x2-x+xy-2y+1=0
y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524267584.png)
设∠A1AB=θ∈[0º,60º],则在△A1BA中,由正弦定理得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524610676.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524626788.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524657905.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524672930.png)
∴AD=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524282338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524501625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240055245161077.png)
(2)y=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524267584.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524766598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524797379.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
当且仅当t=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
AD=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524282338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524501625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240055245161077.png)
∵4sin(θ+60º)·cosθ=2sinθ·cosθ+2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
∵θ∈[0º,60º]∴2θ+60º∈[60º,180º]∴sin(2θ+60º)∈[0,1]
∴4sin(θ+60º)·cosθ∈[
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005525062562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563344.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824005524563560.png)
点评:本小题主要考查正弦定理、余弦定理等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目