题目内容
【题目】若函数在处有极值,且,则称为函数的“F点”.
(1)设函数().
①当时,求函数的极值;
②若函数存在“F点”,求k的值;
(2)已知函数(a,b,,)存在两个不相等的“F点”,,且,求a的取值范围.
【答案】(1)①极小值为1,无极大值.②实数k的值为1.(2)
【解析】
(1)①将代入可得,求导讨论函数单调性,即得极值;②设是函数的一个“F点”(),即是的零点,那么由导数可知,且,可得,根据可得,设,由的单调性可得,即得.(2)方法一:先求的导数,存在两个不相等的“F点”,,可以由和韦达定理表示出,的关系,再由,可得的关系式,根据已知解即得.方法二:由函数存在不相等的两个“F点”和,可知,是关于x的方程组的两个相异实数根,由得,分两种情况:是函数一个“F点”,不是函数一个“F点”,进行讨论即得.
解:(1)①当时, (),
则有(),令得,
列表如下:
x | 1 | ||
0 | |||
极小值 |
故函数在处取得极小值,极小值为1,无极大值.
②设是函数的一个“F点”().
(),是函数的零点.
,由,得,,
由,得,即.
设,则,
所以函数在上单调增,注意到,
所以方程存在唯一实根1,所以,得,
根据①知,时,是函数的极小值点,
所以1是函数的“F点”.
综上,得实数k的值为1.
(2)由(a,b,,),
可得().
又函数存在不相等的两个“F点”和,
,是关于x的方程()的两个相异实数根.
又,,
,即,
从而
,,
即..
,
,
解得.所以,实数a的取值范围为.
(2)(解法2)因为( a,b,,)
所以().
又因为函数存在不相等的两个“F点”和,
所以,是关于x的方程组的两个相异实数根.
由得,.
(2.1)当是函数一个“F点”时,且.
所以,即.
又,
所以,所以.又,所以.
(2.2)当不是函数一个“F点”时,
则,是关于x的方程的两个相异实数根.
又,所以得所以,得.
所以,得.
综合(2.1)(2.2),实数a的取值范围为.